Recruit Talent and Reach IEEE-HKN’s Exclusive Audience of Top Electrical and Computer Engineers and Computer Scientists

FREQUENCY: Three times per year

READERSHIP: 30,000 of the top engineering students and practitioners

THE BRIDGE, the award-winning digital magazine of IEEE-Eta Kappa Nu, publishes three times a year. It’s a perfect platform to promote your company or university to IEEE-HKN members. Each issue is delivered via email to 30,000 of the top undergrad and graduate students and young and seasoned professionals in the IEEE fields of interest.

We have opportunities for advertorials and ads in the main publication and special opportunities in our Graduate Research Spotlight section.

In addition to the current circulation of *THE BRIDGE*, IEEE-HKN inducts over 3,000 new top engineering students each year, which increases the ability to impact an important and ever-growing demographic.

THE BRIDGE is downloadable from the HKN.org website and the IEEE app Year-round. (*THE BRIDGE* is the 2nd most downloaded publication on the IEEE app)

FULL AND HALF-PAGE ADS ALSO INCLUDE:

- A permanent link to your URL on the HKN.org *THE BRIDGE* page
- A direct link to your ad in the distribution email
8 Tips for Handling a Job Search While Working Full-Time

1. Avoid advertising it. Job searches conducted overtly can be a watchword for companies that are not interested in hiring additional personnel, especially when already gainfully employed. The current workplace should remain focused on productivity and not on a possible change elsewhere.

2. Keep it subtle. Only a few people should be aware of the search, such as the spouse or children in the household. They can be continually reassured that the employer is still interested in the candidate.

3. Dress for the job you have, not the one you might lose. If feasible, avoid going to a current job dressed as you would an interview. This is not to mean that one should not dress properly, but rather to keep the current workplace environment as normal as possible.

4. Ask for discretion. Most prospective employers will understand if a candidate has been passed over for a new position, as long as they are not aware of the candidate's plans. To avoid detection by a nosy co-worker or supervisor, wear standard attire to work and refrain from discussing the current job for lunchtime or other appointments.

5. Inform the supervisor, but keep the conversation to a minimum. The current supervisor does not need to know everything about them at some future date. Such information could potentially spread to the employer, warning that a candidate is not interested in the current workplace. By avoiding such a conversation, the candidate will maintain a healthy employer relationship.

6. Keep at it. Inevitably, being passed over for a new job could happen by not completing current work, and without the necessary action being taken could lead to workplace productivity. There is no telling what might happen in the current workplace. Corporate behavior will reflect more on the candidate than on the current employer.

7. Badmouthing a current or previous employer is never a good strategy and prospective employers tend to take notice, perhaps envisioning that same conversation being had about them at some future date. Such an act may encourage that employer to begin his or her own search—for a replacement.

8. Stay focused. A job search should be conducted discreetly and not post their resumes on job boards in their current employer. Likewise, applicants should not list a current coworker, boss or anyone in their current employer. That behavior will reflect more on the candidate than on the current employer.

Contact Nancy Ostin at n.ostin@ieee.org for more information.
Radio Frequency Identification (RFID) systems typically consist of a reader and a tag. The tag can provide identification information and/or information about the environment, such as temperature and humidity. Chipless RFID is a subset of the RFID field where these tags don’t have any power source or electronics. Instead, their information is “stored” in their structure—that is, they’re designed to scatter in a specific way when interrogated with an electromagnetic wave. This scattered response can be viewed in the time-, frequency-, or spatial-domain and a binary code can be assigned to it. Changing the structure of the tag or the environment that the tag is in produces changes in this binary code, and in this way, the tags can provide information and/or information about the environment, such as temperature and humidity.

Katelyn’s work, supported by a NASA Space Technology Research Fellowship, has more specifically examined how chipless RFID tags can be used for structural health monitoring applications in the space and aerospace realms. She has developed new tags that can be used for structural health monitoring. These tags can provide comprehensive monitoring of structures, making them less invasive compared to traditional methods. This allows for more comprehensive monitoring of structures, which is crucial for ensuring safety and longevity in space and aerospace environments.
Partnering with IEEE-HKN puts you in great company

Burns & McDonnell
OPPO
CenterPoint Energy
PERC Engineering
BAE Systems
Rovisys
Northrop Grumman
Huawei
John Deere
Textron Aviation
Tufts University
MEPPI
Westwood
Liquid Instruments
Texas Instruments
EPICS in IEEE
TESTEQUITY
Keysight
Infineon
Lockheed Martin
Qualcomm
Southern California Edison
Los Alamos National Laboratory
Schweitzer Engineering Laboratories
QORVO
NAVAIR Fleet Readiness Center East
Relaying Solutions
Bosch
Doosan Bobcat North America
IEEE Communication Society
IEEE Power Electronic Society
IEEE TA Resources & Strategic Programs
IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society
IEEE Council on Superconductivity
IEEE Future Networks
IEEE Humanitarian Technologies Board
EPICS in IEEE
IEEE Instrumentation and Measurement Society
IEEE Geoscience and Remote Sensing Society
IEEE Microwave Theory and Technology Society
IEEE Education Society
IEEE Electronics Packaging Society
IEEE Computational Intelligence Society
IEEE Sensors Council
IEEE Computer Society
IEEE Systems, Man and Cybernetics Society
IEEE Entrepreneurship
IEEE-USA
University of Michigan
University of North Texas
University of South Alabama

Milwaukee School of Engineering
University of Houston
North Carolina State University
Marquette University
Florida Institute of Technology
NYU Tandon School of Engineering
University of North Carolina Charlotte
University of North Texas
Purdue University
Wentworth Institute of Technology
Missouri University of Science and Technology